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Received 22 August 1990 

Abstract. In the context of the one-dimensional Fisher equation, we study a new numerical 
scheme for reaction-diffusion equations (proposed by Oono and Pun). We find that this 
scheme enables a reasonable simulation of the Fisher equation at high values of the time 
increment, where conventional schemes are not applicable. For lower values of the time 
increment, the new scheme compares favourably with conventional schemes. 

Many important physical phenomena are described by reaction-diffusion equations, 
namely 

where U( r, t )  is a field variable (e.g. order parameter, population density) which depends 
on space (denoted by r )  and time (denoted by t ) .  In ( I ) ,  f ( u ( r ,  t j )  is some function 
(usually nonlinear) which models the local contribution to the temporal change in 
u(r ,  t )  (namely reaction). The diffusion term (V’u(r ,  r ) )  in (1) models the temporal 
change in u(r ,  t )  as a result of diffusion from neighbouring regions. Examples of 
phenomena described by reaction-diffusion equations are population dynamics [ 1-21, 
chemical turbulence [3], phase-ordering dynamics in thermodynamically unstable 
(quenched) systems 141, etc. For most interesting physical applications, f( u(r ,  t ) )  is a 
complicated nonlinear function of U( r, t ) .  In these cases, (1) is not analytically tractable 
and must be solved numerically on a spacetime lattice with (typically) time and space 
increments denoted by A t  and Ax. Conventional numerical schemes are the ‘explicit 
discretization scheme’ and the ‘implicit scheme’ [ 5 ] ,  both to be described shortly. These 
schemes are stable (i.e. errors do not grow exponentially in time) for only small (to 
be quantified soon) values of At,  because of instabilities introduced by the function 
f ( u ( r ,  1 ) ) .  In a recent work, Oono and Puri [6] have proposed a new numerical scheme 
for the solution of reaction-diffusion equations. This new scheme eliminates the 
instability present in the conventional schemes at high values of A t  and is claimed to 
enable reasonable simulations of ( l ) ,  even at high values of At. In this letter, we apply 
the new scheme to the one-dimensional ( I D )  Fisher equation (proposed by Fisher [ 11 
as a model of mutant gene propagation), 

where u ( x ,  t )  refers to the population density at a point x at time t.  Our results are in 
accordance with the claims of Oono and Puri [ 6 ] .  
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We mention briefly that there are only a few analytical results available on the 
Fisher equation, emphasizing the need for efficient numerical simulations. Kolmogorov 
et a1 [7] found that (2)  has a travelling wave solution (called a ‘cline’), which is a wall 
travelling in the +x direction with velocity v s 2  and u ( - a ,  t )  = 1 ,  u(00, t )  = O  (or a 
wall travelling in the -x direction with v d  2 and ~ ( - 0 0 ,  t )  = 0, U ( W ,  t )  = 1). They did 
not provide analytic forms for the cline solutions. As far as we know, these are not 
yet known in general. Subsequently, Aronson and Weinberger [ 81 demonstrated that 
a broad class of initial conditions for (2) asymptotically converge to the cline solution 
with U = *2. Puri et a1 [9] have studied approximations of the cline solution for v = *2, 
though (as mentioned earlier) the exact analytic form is not known. 

There are two important conventional schemes for simulating (2) numerically on 
a spacetime lattice [5]. In the explicit (or Euler) scheme, partial derivatives are 
approximated by their simple difference forms. (Higher-order schemes use more 
elaborate approximations for the derivatives and are more accurate than the Euler 
scheme. However, we do not discuss these here.) Thus, in the explicit scheme, (2) 
takes the form 

U(X, t + A t ) = u ( x ,  t ) [ 1 + A r ( l - ~ ( x ,  t ) ) ]+a[u(x+Ax,  t ) -2u(x ,  t ) + u ( x - A x ,  t)] (3) 
where At and Ax are the time and space increments and a = At/(Ax)’. The stability 
properties of (3) are studied by considering fluctuations Su(x, t )  about the flat solution 
uo= 1 ,  which is a stable solution of (2). Linearizing in Su(x, t ) ,  we have 

(4) SU(X, t + At) = [ 1 - At]bu(x, t )  + a[ SU(X +AX, t )  - ~ S U ( X ,  t )  + 6u (X - Ax, t ) .  

Taking the discrete Fourier transform of (4), we have (assuming periodic boundary 
conditions) 

6u(k, t+At )  = [ 1  - A t  -4a sin2(kAx/2)]6u(k, t )  ( 5 )  

where k is the wavevector associated with the fluctuation. It can take values k =  
n(257/L), where L ( = N A x )  is the length of the lattice and n goes from 0 to N -  1 .  
For (3) to be stable, all fluctuations must decay exponentially in time. This requires that 

A r c 2  S (2  - At)/4. ( 6 )  
The restriction on cy in (6) can be relaxed by invoking the so-called implicit scheme, 
in which the discretized diffusion term is taken at time [ + A t  rather than at time t (as 
in the explicit scheme). The implicit scheme for (2) takes the form 

- a u ( x  -Ax, t + A t ) + ( l + 2 a ) u ( x ,  t +At)  - a u ( x + A x ,  t +At)  

= U(X, t)[l  + A t ( l  - U(X, t))]. (7) 
A linear stability analysis of (7) (similar to that done for (3))  yields 

1 - A t  
Su(k, t+At )  = Su(k, t ) .  

1 + 4a sin2( kAx/2)  

Thus, the only requirement for stability is At  G 2. In the context of the Fisher equation, 
we now quantify what we mean by ‘small’ and ‘high’ values of At.  We will refer to 
values of At s 2 as ‘small’ and A t  > 2 as ‘high’. 

Clearly, the implementation of the implicit scheme requires the solution of a matrix 
equation at each time-step, rather than an algebraic equation as in (3) .  In the I D  case, 
this is not difficult as the equations are in a tridiagonal form. However, the numerical 
solution of the equations for the implicit scheme is much harder in higher dimensions. 
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Apart from the stability criterion, there are also numerical errors introduced by the 
approximation of derivatives by their difference forms in (3) and (7). Thus, these 
schemes give good approximations for solutions of (2) only for very small At, Ax values 
(e.g. At-O(0.002) and Ax==0(0.1) for the explicit scheme). However, it is worth 
noting that qualitatively correct solutions can be obtained for higher mesh sizes. These 
are not accurate numerically but they reproduce the correct qualitative features, which 
is often enough for most physical applications. 

Recently, Oono and Puri [6] have proposed a new numerical scheme for reaction- 
diffusion equations. In this new scheme, the homogeneous part of (1) is integrated 
(analytically or numerically). The solution thus obtained is used to define the evolution 
scheme for (1). We demonstrate the usage of this scheme by applying it to (2). Thus, 
the homogeneous part of (2) is 

du /d t  = U( 1 - U). (9) 

This can be solved analytically as (say) 

U( t + A t )  = u ( t )  
U( t )  + [ 1 - U( t ) ]  exp(-At) 

= F,,(U(t)). (10) 

Then, the evolution scheme proposed by Oono and Puri [ 6 ]  takes the form 

U ( X ,  t+At)=F,,(u(x,  t ) )+a[u(x+Ax,  t ) - 2 u ( x ,  t )+u(x-Ax,  t ) ]  (11) 

where a has the same meaning as previously, namely a = At/(Ax)’. This scheme is 
claimed (by Oono and Puri [6]) to have two major advantages over conventional 
schemes (like (3) and (7)) as follows. 

(i)  It gives the exact solution in the homogeneous case, by construction. This is 
not true for conventional schemes (like (3) and (7 ) ) .  

(ii) For large values of At, conventional schemes (like (3) and (7) )  exhibit oscillatory 
(or chaotic) behaviour in the local mapping. This causes spurious results and limits 
the value of A t  for which accurate simulations are possible. In the new scheme, the 
local mapping is always one-to-one and can never be oscillatory (or chaotic), regardless 
of the value of At. Thus, the new scheme can be used with much higher values of A t  
then the conventional schemes, enabling a more efficient simulation. 

The first claim is trivially seen to be correct. However, the second claim is not quite 
accurate. For the specific case of the Fisher equation, the local mapping in (3)  or ( 7 )  
shows oscillatory (or chaotic) behaviour for At>2.  But, for At>2,  both (3) and (7) 
are unstable (as we have already seen). Thus, it is not possible to perform a simulation 
with a value of A t  for which the local mapping in (3) or ( 7 )  is oscillatory (or chaotic). 
(Actually, this is a more general result. For the reaction-diffusion equation ( l) ,  the 
value of A t  at which the local mapping (in the corresponding explicit or implicit 
scheme) becomes oscillatory is the same as the value of A t  for which the scheme 
becomes unstable. This is because both of these result from the same source, namely 
the destabilization of the fixed point in the local mapping.) However, the second claim 
of Oono and Puri [6] is still valid in the sense that the new scheme gives qualitatively 
correct results for the Fisher equation for A t  > 2. (We will shortly present results which 
demonstrate this.) Thus, we can gainfully use the new scheme for values of A t  which 
are too large (because of instability rather than locally oscillatory behaviour) for the 
conventional schemes. 
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Before we present our numerical results, consider the results of a linear stability 

(12) 

analysis (about U,,= 1) for (11). This yields 

where all symbols have the same meaning as previously. For (1 1) to be stable, we must 
have 

Su(k, r + A t )  = [exp(-At) -4a  sin2(kAx/2)]Su(k, 1 )  

a s (1 + exp( - A t ) ) / 4  (13) 
which can always be satisfied, regardless of the value of Ar. Thus, the instability in 
the local mapping has disappeared because of the introduction of the exact solution 
for the homogeneous case. (Notice that a ‘new implicit’ scheme, in which spatial 
derivatives are taken at time t + A t  rather than at time t, has the further advantage of 
being unconditionally stable. However, we do not wish to introduce the added complica- 
tion of solving a matrix equation at each time step.) 

For our numerical results (presented below), we need the exact solution of the 
Fisher equation. The analytic form of this exact solution is unknown, as mentioned 
earlier. We numerically found the ‘exact’ solution of the Fisher equation by iterating 
(3) with a step function initial condition, namely 

u(x ,  0) = 1 if x s x 0  

= O  if x >  xo (14) 
where xo is the location of the step. For the Fisher equation, this initial condition is 
expected [8] to converge to the U = 2 cline solution. Numerically, we found this cline 
solution by using (3) with a =0.1 (fixed) and by reducing At  till there is no change 
in thz numerical solution on further reduction of At. This was found to occur for 
At  = 0.00025 and Ax = 0.05. With these mesh sizes, we iterate (3) with the initial 
condition (14). The profile obtained after 0.05 time units (200 iterations) is taken as 
the ‘exact’ solution profile and is denoted by u,(x, 0). This profile then translates as a 
travelling wave with U = 2 and we denote this by u,(x, t). 

Figure 1 shows the results obtained in a simulation using the new scheme with 
A t  = 3.364, A x  = 5.8 and lattice size N = 50. We compare (for times 25, 50 and 75) the 
results obtained using the new scheme (shown by a full curve) with the ‘exact’ solution 
u,(x, t )  (shown by a broken curve). The initial condition used in the simulation of 
(11) is the ‘exact’ solution profile u, (x ,  0) obtained as described earlier. These results 
show that, even for a very high value of At  (for which (3) and (7) are unstable), a 
reasonable simulation is possible using the new scheme. In figure 1, it is interesting 
to note that the shape of the solution obtained using the new scheme is approximately 
the same as that of the ‘exact’ solution. The only difference is that the asymptotic 
velocity of the solution from the new scheme is somewhat less than 2, the theoretically 
predicted asymptotic velocity for the ‘exact’ solution [ 81. We are currently studying 
the dependence of the asymptotic velocity (of solutions obtained using the new scheme) 
on the time increment Af. 

A quantitative estimate of the error in the simulation is obtained by considering 
the ‘distance function’ d [ u ,  U,] defined by 

d[u ,  ueI=C [u(x, t ) - u e ( x ,  t )12  (15)  

where x is defined on the lattice. The rate of increase of this distance gives a measure 
of the numerical inaccuracy. Figure 2 shows the distance d [  U, U,] as a function of time 
for the previous case. The major contribution to this ‘distance function’ is from the 
drifting apart of the result obtained using the new scheme from the ‘exact’ solution. 

X 
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Figure 1. Numerical results for the I D  Fisher equation, obtained using the new scheme 
with Ar = 3.364, Ax = 5.8 and lattice size N = 50. We compare results from the new scheme 
(shown by a full curve) with the ‘exact’ solution u,(x,  r )  (shown by a broken curve) at 
times ( a )  25, (b)  50 and ( c )  75. The initial condition for the simulation is the ‘exact’ 
solution profile u,(x,  0). 
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Figure 3. Time dependence of ‘distance function’ d [ u ,  ue] for numerical solutions from 
the conventional (broken curve), implicit (dotted curve) and new (full curve) schemes with 
A t  = 0.064, Ax = 0.8 and N = 256. Again, the initial condition for these simulations is the 
‘exact’ solution profile u,(x,  0). 

It is also of interest to compare the results from (3), (7) and  (1 1) for At < 2. Figure 
3 shows d [  U, U,] as a function of time for (3) (denoted by a broken curve), (7) (denoted 
by a dotted curve) and  (11) (denoted by a full curve) for At =0.064, Ax  =0.8 and  
N = 256. Again, the initial condition used in these simulations is the ‘exact’ profile 
u,(x, 0). Figure 3 shows that (numerical error-wise) the implicit scheme is somewhat 
better behaved than the new scheme and  both of these are much better behaved than 
the explicit scheme. This is true for all At < 2. 

A comparison of figures 2 and  3 gives a n  idea of the numerical inaccuracy introduced 
by increasing the mesh size. Thus, the ‘distance function’ d[u, U,] for the new scheme 
with A t  = 3.364, A x  = 5.8 (figure 2) is only about ten times larger (at comparable times) 
than the corresponding d [  U, U,] for the new scheme with At = 0.064, A x  = 0.8 (denoted 
by a full curve in figure 3), even though the value of A ?  in figure 2 is about fifty times 
larger than that in figure 3. This, coupled with the robustness of the shape of the 
interfacial profile against the increase of At, indicates that a qualitatively correct 
simulation of the Fisher equation is possible at  high values of At if we use the new 
scheme of Oono and Puri [6]. 

To summarize: we have applied a new numerical scheme proposed by Oono and  
Puri [6] to the in  Fisher equation. We find that this new scheme gives reasonable 
results for high values of A f  ( > 2 ) ,  where the conventional schemes are not applicable 
because they are unstable. For At < 2, the implicit scheme is marginally better behaved 
than the new scheme. However, the ease of implementation of the new scheme makes 
it more attractive than the implicit scheme, at least for dimensions higher than 1. 
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